

 $\bar{x} \pm (z \text{ critical value}) \cdot \frac{\sigma}{\sqrt{z}}$ CONFIDENCE INTERVAL:

SIGNIFICANCE TEST:

CONDITIONS:

Sample

One

- The sample must be reasonably random.
- The data must be from a normal distribution or large sample (need to check $n \ge 30$).
- The sample must be less than 10% of the population so that $\frac{\sigma}{\sqrt{n}}$ is valid for the standard

deviation of the sampling distribution of \bar{x}

 $\bar{x} \pm \text{(t critical value)} \cdot \frac{s}{\sqrt{n}}$ CONFIDENCE INTERVAL:

 $\mathbf{t} = \frac{\overline{x} - \mu_0}{\frac{\mathbf{s}}{\sqrt{\mathbf{p}}}}$ where degrees of freedom df = n - 1

CONDITIONS:

- In theory, the data should be drawn from a normal distribution or it is a large sample (need to check that $n \ge 30$). In practice, using the t-distribution is sufficiently robust provided that there is little skewness and no outliers in the data. Look at a graph of the data.
- The data must be reasonably random.
- The sample must be less than 10% of the population.

General Note

$$|z_{calc}| > |z^*| \rightarrow Reject H_0$$

$$|t_{calc}| > |t^*| \rightarrow Reject H_0$$

 $p \ value < \alpha \rightarrow Reject H_0$

Confidence Interval

-We are % confident that the true population (mean/proportion) of _____ falls between __ and __.

Traditional Test

-With a (z_{calc}/t_{calc}) value of being (greater/ less) than a (z^*/t^*) value of ___, we (reject/ fail to reject) H₀.

P-value Test

-With a p-value of being (greater/ less) than an αvalue of ___, we (reject/ fail to reject) H₀.

Two-sample confidence interval and t-test on μ_1 - μ_2

CONFIDENCE INTERVAL: $(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{(s_1)^2}{n} + \frac{(s_2)^2}{n}}$

SIGNIFICANCE TEST: t =

CONDITIONS:

Sample

Two

- The two samples must be reasonably random and drawn independently or, if it is an experiment, the subjects were randomly assigned to treatments.
- In theory, the data should be drawn from normal distributions or be large samples (check that $n_1 + n_2 \ge 30$). In practice, using the t-distribution is sufficiently robust provided that there is little skewness and no outliers in the data for each sample. Examine graphs of both sets of

$$df = n_1 - 1 \text{ or } n_2 - 1$$

Whichever is Lower

Proportion

One-sample confidence interval and z-test on p

CONFIDENCE INTERVAL:

$$\hat{p} \pm \mathbf{z}^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

TEST STATISTIC:

$$= \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

CONDITIONS:

- The sample must be reasonably random
- The sample must be less than 10% of the population
- The sample must be large enough so that:

 $n \cdot \hat{p}$ and $n(1 - \hat{p}) \ge 10$ for a confidence interval $n \cdot p$ and $n(1 - p) \ge 10$ for the significance test

Two-sample confidence interval and z-test on $p_1 - p_2$

CONFIDENCE INTERVAL:

$$(\hat{p}_1 - \hat{p}_2) \pm \mathbf{z}^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n}}}$$

where
$$\hat{p}_c = \frac{x_1 + x_2}{n_1 + n_2}$$

CONDITIONS:

- The two samples must be independently drawn and reasonably random or subjects were randomly assigned to two groups.
- The sample sizes must be large enough so that: $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$, $n_2(1-\hat{p}_2)$ are all five or more. (the number of successes and the number of failures must be at least 5) for the

The sample size must be large enough so that: $n_1\hat{p}_c$, $n_1(1-\hat{p}_c)$, $n_2\hat{p}_c$, $n_2(1-\hat{p}_c)$ are all five or more. (the number of successes and the number of failures must be at least 5) for the